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Viscoelastic theory is used to describe the response of a floating ice sheet to a moving 
vehicle. We adopt a two-parameter memory function to describe the behaviour of the 
ice, subjected to a steadily moving line or point load. The viscoelastic dissipation 
produces an asymmetric quasi-static response at subcritical speed, renders a finite 
response a t  the critical speed, and damps the shorter leading waves rather more 
severely than the longer trailing waves a t  supercritical speed. We extend earlier 
asymptotic theory to consider the anisotropic damping of the flexural waves. There 
is enhanced agreement between theory and experiment. 

1. Introduction 
Many features of the response of a floating ice sheet to  a moving vehicle can be 

explained by modelling the ice as a thin elastic plate. Wilson (1958) observed that 
flexural waves occur if the load speed V exceeds the local minimum emin of a classical 
elastic-gravity free wave dispersion relation (Greenhill 1887), whereas at lower 
speeds there is a quasi-static response relative to the load resembling that produced 
when the load is stationary. Theoretical expressions for the ice displacement were 
first derived by Kheisin (1963) for a steadily moving point or line load. The amplified 
response a t  the critical speed V = emin corresponds to an accumulation of energy 
underneath the source, since cmin coincides with the group speed (Davys, Hosking & 
Sneyd 1985). More recent experimental studies of ice waves (Eyre 1977; Beltaos 
1981; Takizawa 1985, 1986; Squire et al. 1985, 1986) have largely confirmed 
theoretical predictions obtained assuming a thin elastic plate (cf. Kerr 1983 ; Hosking 
& Sneyd 1986; Schulkes, Hosking & Sneyd 1987; Schulkes & Sneyd 1988). Reference 
may also be made to a survey by Kerr (1981). 

There are however certain features that are not satisfactorily described by the 
elastic theory, such as the observed lag of the position of maximum depression 
immediately behind the source (Takizawa 1985). Given earlier analysis for the 
simpler problem of a beam resting on an elastic foundation, this phenomenon is 
probably due to dissipation (cf. Kerr 1981 ; Takizawa 1986). We are also interested 
in the viscoelastic damping of flexural waves with distance from the source (Davys 
et al. 1985). In  this paper, we modify the mathematical model for the ice plate to 
consider viscoelasticity, and find that both phenomena can be well understood using 
a simple memory function involving two viscoelastic parameters. The viscoelastic 
equation of motion is discussed in $2, followed by analysis for a steadily moving line 
source in $3, and for a point source in $4. We give results for parameters typical of 
McMurdo Sound (Antarctica) in this discussion, but in $ 5  we also briefly consider the 
relevant experimental data obtained by Takizawa (1985, 1986) in Japan. 

Australia. 
t Rjew address : Department of Mathematics, James Cook University, Townsville Q4811, 
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2. Viscoelastic equation of motion 
Consider an infinite homogeneous ice sheet of thickness h and density pi, floating 

on water of density p,  The undisturbed water surface is a t  z = 0 and the sea bed at  
z = - H ,  as shown in figure 1. If ~ ( x ,  y, t )  represents a small vertical ice-sheet 
deflection, then the equation of motion for the ice sheet treated as an elastic plate 

(2.1) 
is 

DV4y +pi hy,, = p - f ( ~ ,  Y, t ) ,  

Eh3 
where D =  

12( 1 - v2). 

Here, E denotes Young’s modulus and v Poisson’s ratio for ice, p is the water pressure 
at  z = 0, and f ( x ,  y, t )  is the loading function, or downward stress exerted on the 
ice due to  the load. Typical figures for McMurdo Sound are E = 5 x lo9 Nrnp2, 
h = 2.5 m, H = 350 m and v = 4 (cf. Davys et al. 1985), which we again adopt in 
this paper unless otherwise stated. Introducing viscoelasticity modifies the bending- 
force term f B  = DV’y in (2.1).  Since we are concerned with only very small ice 
deflections due to a moving load, we adopt a linear viscoelastic model where 

fB(x> Y, t )  = DV4 Y(X, Y, t ) -  p(7) ~ ( x ,  y, t -7 )  d7 , i sxr 1 
corresponding to a constitutive equation involving an hereditary integral (Boltz- 
mann 1874; Graffi 1982). The function Y(t) is called a memory function, for now 
the bending force depends not only on the instantaneous deformation but also the 
deformation history. We assume that the memory of the ice fades with time (this is 
in agreement with the fading memory hypothesis of Coleman & No11 1961), so that 
I!P(t)l decreases monotonically to zero as t - t  00. If we assume a general relationship 
between the bending force f B  and the displacement 7 of the form 

12 a k  n a k  
a k @ f B =  c bk@V47; 

k=O k-0 

it follows that the memory function is represented by a finite sum of exponentials (cf. 
Graffi 1982), i.e. n 

Y(t) = c Aje-ajt, (2.3) 
i = O  

where the Aj and ai are viscoelastic parameters. For P(t) to satisfy the fading- 
memory hypothesis it is necessary that each aj > 0 and that all Ai have the same sign. 
Furthermore, to ensure positive energy dissipation we have that each Ai > 0 (cf. 
Appendix A). Thus the equation of motion of a viscoelastic ice plate is 

Note that this formulation of the viscoelastic equation of motion is equivalent to 
using the correspondence principle of viscoelasticity (cf. Squire & Allan 1980, Bates 
& Shapiro 1981a, b ) .  

Assuming that the sea-water flow is irrotational with velocity potential 9, we can 
use Bernoulli’s theorem to rewrite (2.4) as 
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FIGURE 1. Diagram of floating ice plate. 

In  the following discussion we neglect the acceleration term pihvtt, which is justified 
in our context because the wavelength of the surface displacement is always much 
larger than the ice thickness h. Since the water motion penetrates to a depth 
comparable with one wavelength, the inertia of the thin plate is small compared with 
that of the moving water, 

The viscoelastic equation of motion (2 .5)  may be solved by taking a Fourier 
transform in x, y and t : thus writing 

i ( l ,  m, w )  = (27~)~ :  ~ ( x ,  y, t)ei(lzfmy-wt)dn:dydt, s 
and assuming that the disturbances vanish a t  infinity, we obtain 

-At m, w )  ' D k 4 ( l - $ ) + p g - ( p w 2 / k )  cothkH' 

where k2 = 1' +m2 and 

@(w) = JOm Y ( T ) c - ~ ~ ~ ~ ~ ~  (2.7) 

defines the parametric frequency dependence introduced by the viscoelasticity. We 
have used the usual irrotational water-wave theory to evaluate q4t, and note that the 
elastic limit corresponds to $ E 0 (cf. Davys et al. 1985). 

We adopt the simplest possible memory function, by setting n = 0 in (2.3). We 
therefore have two viscoelastic parameters, A ,  representing the magnitude of 
v scoelastic effects, and a, the reciprocal of the memory timescale. This is a 
generalisation of the memory function for the Maxwell viscoelastic model (where 
A,, = ao). Equation (2.7) therefore gives the frequency dependence 

We emphasize that our approach is phenomenological. The detailed structure of ice, 
especially sea ice, is complex and its properties vary considerably with depth. 
Although there is some experimental evidence to suggest a combination Maxwell- 
Voigt model (Tabata 1958), we find that two oarameters are enough to model 
the observed dissipative features of the ice displacement due to a moving load. The 
parameters, including D in the otherwise classical differential equation (2.1) for the 
displacement of a uniform plate, are interpreted aq representing gross properties of 
the ice. 
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3. Concentrated line load 

positive x-direction, we have the loading function 
For a steady one-dimensional (y-independent) load travelling with speed V in the 

f(x, t) = F(x- Vt),  

so using k as the spatial Fourier transform variable we have 

f ik ,  w) = (271);6(Vk-w) P(k), 
where 6 is the Dirac delta-function. I n  particular, for a concentrated line load with 
F = fo6(x- V t )  we have E = f0/(271)f, so in this case Fourier inversion of (2.5) 
yields 

e-ikX dk  
yields 

r ( X )  = ~ -fo 271 Sa --co Dk4(l-$,)+pg-pkV2 cothkH’ 
e-ikX dk  

r ( X )  = ~ -fo 271 Sa --co Dk4(l-$,)+pg-pkV2 cothkH’ 

where X = x- V t  is a coordinate moving with the source and 

$,, = @(kV) = A,/(a,+ikV). 

It is convenient to write the integral (3.1) in dimensionless form. We define a 
characteristic lengthscale L = (3D/pg)f = k&, where kmin is the wavenumber a t  
which the phase speed achieves its minimum value cmin = 2(Dg3/27p)i according to 
elastic theory, in the case of deep water (cf. Davys et al. 1985). We also define a 
typical timescale T = L/cmin = &(243D/pg5)i, which for the McMurdo Sound 
parameters is approximately two seconds. Introducing the dimensionless variables 
k‘ = kL, ah = a,T, X’ = X / L  and V = V/cmin the equation (3.1) can therefore be re- 
expressed (on dropping 

where 

the primes) as 

e = A,T.  
k4 

a. + ikV ’ 
B(k) = k4-4kV2 ~ 0 t h k H + 3 ,  C(k) = 

Note that (3.2) reduces to the equation for the displacement in the elastic limit when 
e = 0, and when E 1 the term eC(k)  represents a small viscoelastic perturbation 
from the elastic case, Henceforth k,  a,, X ,  V ,  H are dimensionless except where units 
are specified. 

3.1. Poles in the integrand 
The integral (3.2) may be evaluated using contour integration, If k, denotes a root 
of B(k), and ek, is a small perturbation from this point due to  viscoelasticity, we 
have 

B(k)  -eC(k)  = e[k,Bl(k,) -C(ko)] + 0 ( e 2 ) .  

Hence provided B ( k o )  $: 0, to first order in e the integrand of (3.2) has poles a t  

(3.3) 

When B’(k,) = 0, corresponding to the critical point a t  which the phase speed is 
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FIGURE 2. Graph of phase speed c against wavenumber k ,  with reference to vehicle speed. 

minimum in the elastic limit (i.e. V = cmin), we have to include the next term in the 
expansion of B(k). The pole then occurs at 

(3.4) 

Note that in this case the perturbation is of order st rather than e ,  so the poles are 
perturbed further as the minimum phase speed is approached. 

The function B ( k )  is even, and for source speeds in the range emin < V < (gH); has 
real roots k, = f ley, If: k, (cf. figure 3) which correspond to the wavenumbers a t  which 
the source and phase speeds are equal in the elastic case (cf. figure 2). For V > ( g H ) i  
the function B(k) has real roots k, = & k,  only, and when the source speed V is equal 
to cmin the function B(k) has only two roots, k, = +k,, which correspond to the 
critical points a t  which B'(k,) = 0. Since C ( k )  is complex the poles k, will be 
complex - i.e. viscoelasticity moves the poles off the real axis. Since B'(k) is odd, it 
follows from (3.3) that the viscoelastic perturbation to each pole has an even real part 
and an odd imaginary part. Thus the poles f k, become f k, -i6,, and IfI k, become 
- + k,+id,. Note that since B'(k,) < 0 and B'(k,) > 0 (cf. figure 3), we have k ,  > k ,  > 0 
and a,, 6, > 0. 

For source speeds less than emin the function B ( k )  itself no longer has real roots (cf. 
figure 3) but complex roots, and since B(k)  is a real even function these roots may be 
written in the form le, = +k ' f i s '  (cf. figure 4). Equations (3.3) and (3.4) still hold 
however, so as before the poles of (3.2) may be written in the form 

k,  = +k,-i6,, fk,+iS,. (3.5) 

Figure 4 is a plot of the imaginary part of the poles versus the real part, showing that 
the roots are indeed of the form (3.5), and also that k, > k,. 

14-2 
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FIGURE 3. Behaviour of elastic component B(k)  of dimensionless dispersion relation with source 
speed (a )  V = 15 m s-l; ( b )  V = cmin = 22.5 m s-l; (c) V = 40 m s-l; (d )  V = 65 m s-l > ( g H ) f .  

FIGURE 4. Loci of the zeros of the dimensionless dispersion relation, comparing the elastic limit 
(dashed line) with a viscoelastic case, A ,  = 0.1 s-l and 01, = 0.1 s-l (continuous line). 

The integrand of (3.2) also has an infinite number of poles on the imaginary axis. 
If we write k = is and define 

s4 
p ( s )  = S4 + 3, q(s) = 4svz cot S H  + E -  

a,-SV' 
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FIGURE 5. Location of the infinite sequence of imaginary poles, at  source speed V = 30 m s-l 

A ,  = a, = 0.1 s-l .  

the points a t  which p ( s )  = q(s) correspond to  poles in the integrand. Figure 5 shows 
graphs of the functions p and q, from which we observe a countably infinite sequence 
of poles a t  s,(n = 1,2, .  ..) where nx /H  < s, < (n+ 1)x/H, and a similar sequence of 
poles for s negative. There is also another pole where s,, x a,,/V, but no others (cf. - - - 

Appendix B). 
3.2. Steady displacement 

The steady ice displacement (relative to the source) is given by (3.2), where the 
integral may be evaluated by contour integration. For X > 0 we close the contour by 
a large semicircle lkl = R in the lower half-plane, along which the integral tends to 
zero as R+ GO (by Jordan's lemma). Writing the two poles k,-iSl and -kl -is, 
defined previously as k ,  and -6, (where k,  = kl-iSl), the sum of their residues is 

where M ,  = l/IG'(k,)J and 0, = Arg(G'(k,)). For X < 0 the contour is closed in the 
upper half-plane, enclosing poles with positive imaginary part. The poles f k, + is, 

- 2iM, sin ( k ,  X + 0,) ebax similarly contribute 

tf) the displacement 7. Only the first few poles in each infinite sequence { _+is,} may 
give significant contributions to the displacement, and these contributions are only 
important in the vicinity of the source (cf. Schulkes & Sneyd 1988). The contribution 
of the pole is, when X < 0, which describes the ice memory of the maximum 
displacement in the vicinity of the source, is eM3 eaoxiv, where typically M3 < Ml, M,. 
For larger 1x1 we therefore have an approximate form for the displacement : 

2dM1 sin ( k ,  X + el) e-'iX, 
(3.6) 
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FIGURE 6. Theoretical ice displacements for various subcritical source speeds, to demonstrate the 
accuracy of the analytical result (3.6) by comparison with calculation using a fast Fourier 
transform. A,  = a, = 0.1 s-l. (a)  F' = 10 m s-l, (b )  15 m s-', (c )  20 m s-'. 

Figure 6 (u-c) shows the displacement 7 versus distance X for various subcritical 
source speeds. The continuous line represents calculated using (3.6) and the dashed 
line that calculated using a fast Fourier transform of integral (3.2). Note that the 
displacement is asymmetric about the origin, rather than symmetric as in the elastic 
limit (cf. Schulkes & Sneyd 1988). Viscoelasticity causes the point of maximum 
depression to lag the load (cf. also 54). 
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FIGURE 7. Variation of viscoelastic damping coefficients S,, 6, with source speed. 
A ,  = a, = 0.1 s-1. 

For source speeds exceeding cmin we expect waves generated in the ice, with a short 
wave leading the source and a longer wave trailing it, consistent with our earlier 
observation that 12, > k,. From (2.7) we expect the viscoelasticity to more strongly 
affect the short waves, and we find 6, % 6, for V > cmin (cf. figure 7),  so from (3.6) the 
shorter leading wave is much more strongly damped than the longer trailing wave. 
Figure 8(a-c) shows the ice displacement obtained from (3.6), for a source speed of 
30 m s-l (with cmin = 22.5 m s-'). Figure 8 ( a )  shows the displacement for the elastic 
limit A ,  = 0, and as the viscoelastic parameter A ,  increases the waves are damped 
(cf. figure 8b,  c ) ,  with the shorter wave ahead of the source damped considerably more 
than the longer trailing wave. 

Figure 9 shows the response amplitude measure MI versus the source speed (scaled 
to cmin) with a, fixed while A ,  varies. The significant increase in the displacement 
amplitude, as the source speed approaches the critical phase speed, resembles that 
found experimentally (cf. $ 1 ) .  Although the elastic limit is approached as A,+O, we 
find that the maximum amplitude is finite (as previously shown by Bates & Shapiro 
1981a, b) ,  and does not occur exactly at  17 = cmin but a t  a slightly lower speed. Figure 
10 is a similar plot of Ml versus V/cmin,  except that now A ,  is fixed and the other 
viscoelastic parameter a, is varied. We note that the maximum amplitude increases 
as A ,  decreases, and also as a, increases - i.e. limiting to the elastic case (as A ,  --f 0 or 
a,+ a). It is conceivable that the peak value might be used for model calibration, 
but in practice its measurement is difficult, and there is also the question of the time 
necessary to approach a quasi-steady state (cf. Schulkes & Sneyd 1988). The response 
amplitude M,  has a similar dependence, with resonance near the critical speed cmin. 
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FIGURE 8. Viscoelastic modification of the supercritical response (V = 30 m s-l) (a) elastic limit ; 
( b )  A ,  = 0.05 s-', a, = 0.1 s-'; (c) A ,  = 0.2 S-', a, = 0.1 s-'. 

4. Point source 

we write f(z, y, t )  = F(x-  Bt, y), so that 
For a steady stress distribution travelling with speed V in the positive x-direction, 

In this case Fourier inversion of (2 .5)  yields 

P(1, m) e-i(zx+mu) dl dm 
r ( X ,  y) = -- D k 4 ( l - $ , ) + p g - ( p Z 2 V 2 / k )  cothkH' (4.1) 
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FIGURE 9. Variation of response amplitude with source speed, with A ,  (ao = 0.1 s-l). 

where for the memory function F(t) = Aoe-=Ot we have $v = A,/(a,+ilV). Intro- 
ducing the same dimensionless variables as in $3 ,  we can re-express (4.1) as 

where 9' = 3/(pgL2) and 
ek4 

coth kB -k 3 -____ 
4Z2V2 

G(2, m) = k4-- 
k a,+ilV' (4.3) 

Note that G(1, m) = 0 is the dimensionless viscoelastic dispersion relation with w 
replaced by V1, and the elastic limit corresponds to  E = 0 (Davys et al. 1985). 

4.1. Steady wave patterns 

We proceed to construct steady wave patterns based on an asymptotic formula for 
the displacement. In  the elastic limit (c  = 0) a wavenumber curve is defined by 
G(1, m) = 0 in the (1, m)-plane (cf. Davys et al. 1985), but in this viscoelastic theory 
( E  =l 0) G is complex. Let us write 

G(k)  = B(k)+iC(k), 

where B and C now denote its real and imaginary parts, each of which is dependent 
on the wavenumber k = ( I ,  m) and the viscoelastic parameter E .  

If we assume that E % 1 (i.e. small viscoelastic dissipation), to order E the complex 
roots k = k,+ik,(kI 4 k,) of G(k) = 0 are such that 

and 

B(k,) = 0 

k,-VB(k,)+C(k,) = 0. 

(4.4) 

(4.5) 
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FIGURE 10. Variation of response amplitude with source speed, with a, (A ,  = 0.1 s-l). 

Equation (4.4) defines the viscoelastic wavenumber curve V,, which is the locus of 
possible k, for a steady wave pattern, while (4.5) defines the corresponding k,,  which 
determines viscoelastic decay. We may solve (4.5) geometrically by drawing another 
curve V, (the 'damping curve') which is everwhere a normal distance 

inside V,, where B, denotes the derivative of B in the normal direction to %?k, As 
Ik,-VBI = SlB,J, any vector joining a point on the curve V h  to a neighbouring point 
on V, will be a solution of (4.5). The viscoelastic curve Vk is typically close to its 
elastic limit, and the distance S to the damping curve V,, increases with wavenumber 
k ,  so as expected shorter waves decay more rapidly than longer waves. 

From any point defined by k, = (Z,, m,) on V k ,  waves are radiated in the direction 
of the normal to V, at that point (in the sense of increasing w ) .  Thus the previous 
dimensional asymptotic formula for the ice displacement at a distance from the load, 
for waves associated with any such point at which V, is convex (cf. equation (3.6) of 
Davys et al. 1985), when modified to include viscoelasticity becomes (Appendix C) 

which includes the viscoelastic decay factor So andphase shift x. Using a-point-source 
approximation to the loading function we replace F(k,)  by the constant F ( 0 )  = W/2x ,  
where W is the weight of the source. The plot of the viscoelastic decay factor 
So in figure 1 1  clearly shows how much greater it is for shorter waves ahead of the 
source than for the longer waves behind. We note that the two values of S(8) a t  
6 = O", 180" agree with the values S,, 8, given by the more restrictive line-load model, 
cf. figure 7. 



Viscoelastic response of a $outing ice plate to a moving load 42 1 

e 
FIGURE 11 .  Anisotropic viscoelastic decay factor 8(0) for source speed V = 30 m s-l and 

viscoelastic parameters A ,  = 0.1 s-l, a. = 0.1 s-l. 

The wave crests are lines of constant phase 

l,X+m,y-X = K ,  

and to each point P on qk there corresponds a point on the wave crest whose polar 
coordinates in the (2, y)-plane are 

(a E ,  cosy’ 8 )  

where y = 0-p  and /3 is the angle between the wavenumber vector k, and the source 
velocity (cf. Davys et al. 1985). The wave-crest patterns obtained are shown in figure 
12, where we observe that the viscoelastic wave crests lag the elastic wave crests but 
usually only slightly. As V increases towards V, = 37.5 m s-l however - the speed a t  
which caustics form (Davys et al. 1985) -the curvature K of the wavenumber curve 
becomes locally very small, and the theoretical phase shift x becomes relatively large. 
This causes the local disturbances in the wave-crest patterns seen in figure 12, which 
are particularly noticeable for larger A, values. Strictly speaking, the mathematical 
analysis is invalid if x = 0(1) but nonetheless should give a correct qualitative 
picture (cf. also Sneyd 1987). 

4.2. Comparison with Antarctic experiments 
Squire et al. (1986) carried out experiments at McMurdo Sound, which provided 
strainmeter records at various transverse distances (from 30 to 800 m) from an ice 
road. In figures 13 and 14 we compare two representative ice-strain records, for a 
strainmeter parallel to the road (at 30 and 100 m respectively), with the responses 
predicted by elastic and viscoelastic theory. Here we use the physical parameter 
D = 1.6 x lo9 Nm determined by Squire et al. (1986) for their experiments, for which 
the critical speed cmin x 18 m s-l, but retain the viscoelastic parameter values 
A, = 0.1 s-l, a, = 0.1 s-l as shown. The main consequence of viscoelasticity is to 
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FIQURE 12. Viscoelastic lag of wave pattern, V = 30 m s-'. ---, elastic limit; ------, A ,  = 0.1 s-l, 
a, = 0.1 s-1; , A ,  = 0.5 s-', a, = 0.1 s-'. 

modify the response envelopes, which enhances the quite good agreement between 
theory and experiment. 

The theoretical decay of the maximum response with distance from the source, 
given by the viscoelastic formula (4.6) as e-80r/ri, is somewhat faster than in the 
elastic limit (when So = 0). Squire et al. (1986) found that the attenuation is slightly 
underestimated by the elastic decay. 

5. Experiments in Japan 
Takizawa (1985, 1986) studied the response of sea ice sheets to moving loads, on 

Lake Saroma in Japan. In  this section we compare results obtained from our 
viscoelastic model with some of Takizawa's observations that are not so well 
explained by elastic theory. We use the concentrated line-load theory of $3, for his 
measurements were made quite near the vehicle path. The parameter values 
H = 6.8 m and D = 2.0 x lo5 Nm are appropriate for the ice a t  Lake Saroma, for 
which the minimum phase speed is cmin = 6.0 m s-'. Takizawa found that the 
maximum depression occurs when the vehicle speed was in the range 5.6 to 
6.0 ms-l, so he suggested that it was reasonable to take emin = 5.8 m s-'. Our 
slightly higher value of cmin is consistent with the knowledge that the maximum 
displacement does not occur exactly a t  cmin but a t  a slightly slower speed. The 
reference timescale T defined in $3 is less than half a second in this case. 

Typical ice displacements observed by Takizawa, such as those reproduced in 
figure 15, correspond to distinctive source-speed regimes (cf. also Eyre 1977; Squire 
et al. 1985, 1986): 

(a )  a quasi-static regime (V  < 0.6cmin), when the displacement is similar to that of 
a static load but the centre of the depression slightly lags the source; 
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FIGURE 13. Comparison of strainmeter responses for vehicle speed V = 20.7 m s-l, at 30 m rom test 
road, ( a )  as observed by Squire et al. (1986); (b )  elastic theoretical; (c) viscoelastic theoretical 
( A ,  = 0.1 5-1, a, = 0.1 5-1). 

(b)  an early-transition regime (0.6cmi, < V < 0.85cmi,), during which the de- 
pression becomes narrower and deeper, and the rim rises progressively ; 

(c)  a late-transition regime ( 0 . 8 5 ~ ~ ~ ~  < V < cmin), where a wave-like pattern 
begins to appear both behind and in front of the source, and simultaneously the 
depression centre lags behind the source ; 

(d )  a two-wave regime (cmin < V < (@)a),  with a relatively short wave ahead of 
the source, and a longer wave behind; and 

( e )  a single-wave regime (V  > (gH);) where the trailing wave disappears, leaving 
only the shorter wave propagating ahead of the source. 
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FIGURE 14. Comparison of strainmeter responses for vehicle speed V = 20.9 m s-’, at  100 m from 
text road; (a)  as observed by Squire et al. (1986) ; (b) elastic theoretical; (c) viscoelastic theoretical 
(A, = 0.1 s-1, a, = 0.1 5-1). 

Figure 16 shows theoretical ice displacement for a representative pair of values for 
the viscoelastic parameters A ,  and do. These theoretical responses have the same 
characteristics as the experimental results in figure 15, including the lag for slow 
source speeds not explained by elastic theory. Note that the depression depths are 
also comparable with the experimental results. As suggested previously, one possible 
method of estimating the parameters A ,  and a, is to compare the theoretical response 
amplitude All (or M,) with experimental data, but in Takizawa’s experiments tb 
amplitudes are limited by the time the vehicle has been travelling (cf. Schulkes & 
Sneyd 1988). In so far as the rather qualitative comparison of the displacement 
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FIGURE 15. Typical observed ice displacement records at various vehicle speeds 
(from Takizawa 1985). 

allows, we assessed A ,  and a, to be in the ranges 1.0-2.0 s-l and 1.75-2.0 s-l 
respectively . 

Takizawa noted that the maximum depression lags the source for all speeds 
however, and that for slow speeds this lag is roughly constant (cf. figure 17). In our 
viscoelastic model, for fixed A ,  there is only a small range of a, such that the lag is 
almost constant for V < cmin, so if it is indeed constant we have quite a sensitive test 
for estimating a,. The constancy of the lag a t  low speeds is not so sensitive to the 
parameter A,, for fixed a,. Takizawa observed that the lag for slow speeds was about 
one metre for observations taken a t  a distance of one metre from the test track (cf. 
figure 17). At closer distances the observed lag for slow speeds may be somewhat 
smaller -perhaps 0.6 m (cf. Takizawa 1985, figure 9). Figure 18 shows the theoretical 
lag versus speed for various fixed values of A,, with a, in each case determined to 
produce a constant lag at low speeds. One of these curves corresponds to the 
viscoelastic parameters for figure 16, and indeed there is an acceptable correlation 
with the parameter ranges mentioned above. 

Takizawa (1985) suggests that the lag time t ,  = 1V should be comparable with the 
relaxation time 7 of a viscoelastic model. From a graph oft, versus vehicle speed (cf. 
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FIGURE 16. Theoretical displacement for comparison with Takizawa (1985). A, = 1.5 s-l, 
a. = 2.0 s-l. (a) V = 2.2 m s-', (b)  4.2 m s-l, (c) 5.5 m s-l. 

Takizawa 1985, figure 11) i t  appears that  t ,  ranges from 0.2 to 0.8 s. For our 
viscoelastic model r = ail ,  so this suggestion is that  cto should be in the range 
1.25-5.0 s-l. The values of a0 we have adopted are certainly within this range. 

6. Concluding remarks 
A simple memory function with two parameters is adequate to  describe the 

viscoelastic response of a floating ice sheet to a moving vehicle. Typically small 
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FIGURE 17. Observed variation of lag I, measured at a distance of 1 m, with vehicle speed 
(from Takizawa 1985). 

0 1 

FIGURE 18. Theoretical lag versus source speed, for various pairs of viscoelastic parameters. 
(a) A ,  = 1.0 s-l, a, = 1.75 s- l ;  (b )  A ,  = 1.5 s-l, a, = 2.0 s-l; (c) A ,  = 2.0 s-', a, = 2.25 s-l; 
(d) A ,  = 2.5 s-', a, = 2.5 s-'. 

viscoelastic dissipation produces an asymmetric quasi-static response a t  subcritical 
speed ( V  < cmin), renders a finite response at the critical speed V = cmin, and damps 
the shorter leading (elastic) waves more severely than the longer trailing (gravity) 
waves a t  supercritical speed ( V  > cmin). The viscoelastic theory can account for the 
measured lag of the maximum depression immediately behind the load, and 
generally there is enhanced agreement with experiment for plausible estimates of the 
two viscoelastic parameters. An asymptotic expression for the ice displacement due 
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to flexural waves confirms the anisotropic viscoelastic damping with distance from 
the load, and we also predict an associated wave-crest lag. 

We are indebted to our student and colleague R. M. S. M. Schulkes, for his 
collaboration and enthusiasm during the initial phase of this research. 

Appendix A. Proof that viscoelastic parameter A ,  2 0 

energy dissipation per cycle is approximately 
Consider the case where the displacement is periodic with period T = 27c/w, so the 

AW = 1: Re(DY4[q-~0m Y(7)q(2, y, t-7)d7 Re(*} dt. li 
Writing q(x,  y, t )  = qoei(wt-k'x), we have 

DV4[7-JOm y1(7)7(x ,  y, t-7)d7 = D7,k4(l--A) ei(cot-k.x), 1 
where A ,  A z 1; Y(7) e-iw7d7 = ___ 

a , + i w '  

If we write 1 - A  = Rei8, then 

A W  = Dk'yiRw cos(k-x-wt-6) sin(k.x-wt)dt, 1: 
= xDk4Rq; sin 6. 

As energy dissipation must always be positive, it follows that sin 6 2 0 so 0 d 6 d x. 
Now 

hence 

O$ + w2 - a, A ,  A, o 1 - A  = +i ___ 
a; + w2 a; + w2' 

Since R,  w and sin 6 are all non-negative, so is A,. 

Appendix B. Further analysis of the poles in the integrand of (3.2) 
For any function that is meromorphic inside or on a closed curve C in the complex 

2x 
plane 1 

N - P  = - Aarg, 

where N and P are respectively the number of zeros and poles inside C, and Aarg 
denotes the change in the argument of the function resulting from a complete 
traversal of C (see e.g. Titchmarsh 1939, section 3.4). We can use this result to 
account for all the poles of the integrand of (3.31, treated as a function of the complex 
variable k : viz. 

e-ikX 

I ( k )  = 
k4-4kV2 coth kH+3-[ek4/(a,+ikV)]' 

Recall that  there are poles a t  -t k ,  - is,, & k ,  + is,, and is, ; and on the imaginary axis 
there is also an infinite sequence of poles tending to  +_inx/H as positive integer 
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n-t  co. The function I ( k )  has roots whenever coth kH + & co (i.e. k = inx/H), or 
k = ia,,/V. 

Let us consider a circular contour of large radius on which k = Re”, where 
0 < 8 < 2% and R = ( n + ; ) n / H ,  with n large. This choice of radius ensures that 
none of the previously identified poles lie on the contour (21 = R. Then we have 
I(k) M e-ikx/k4, hence arg ( I ( k ) )  = - RX cos 8-48 and A arg (I(k)) = - 8x for n 
sufficiently large, so 

N - P  = - 4 .  

The contour IzJ = R encloses exactly 2n+ 1 zeros of I ( k ) ,  all of them on the imaginary 
axis, and we have already identified 2n+5 poles. We therefore conclude that we have 
identified all the poles. 

Appendix C. Asymptotic formula for the displacement 
Let us adopt a reference frame moving with the source. Whatever the field 

direction from the source, we can always orient the axes so that the displacement 
far from the source is given by the asymptotic behaviour of (4.1) on y = 0 as x+ co. 
The inner integral may be evaluated by contour integration. Thus for waves radiating 
away from the source we seek an asymptotic expression (as x-t  co) for the integral 

P(z, m) e-ilze-$z 
dm. 1% GJL m) 

arising due to a pole in the complex I-plane with real part Z(m) defined by a point on 
W k  associated with the direction of propagation, and a small negative imaginary part 
-is(%) determined from W,, (we ignore the infinite sequence of poles on the 
imaginary axis as x -t 00, and the pole near iao/ V ) .  

Since S(m) is small and changes only slowly in comparison with Z(m), the saddle 
point a t  m, = a-i#(a)/Z”(a) is near the point of stationary phase a (where I’ = 0)  that 
occurs in the elastic limit. On deforming to a contour of integration passing through 
m, on which S(m) M 6(a), and then applying the method of stationary phase, we have 
the asymptotic expression (4.6) involving the viscoelastic decay factor S(a) and a 
small additional phase shift (Sneyd 1987). 
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